Evolution with Recombination

Varun Kanade

SEAS

Harvard University
Cambridge, MA, USA
vkanade @fas.harvard.edu

Abstract—Valiant (2007) introduced a computational model
of evolution and suggested that Darwinian evolution be studied
in the framework of computational learning theory. Valiant
describes evolution as a restricted form of learning where
exploration is limited to a set of possible mutations and
feedback is received through the survival of the fittest mutation.
In subsequent work Feldman (2008) showed that evolvability
in Valiant’s model is equivalent to learning in the correlational
statistical query (CSQ) model. We extend Valiant’s model
to include genetic recombination and show that in certain
cases, recombination can significantly speed-up the process of
evolution in terms of the number of generations, though at the
expense of population size. This follows via a reduction from
parallel-CSQ algorithms to evolution with recombination. This
gives an exponential speed-up (in terms of the number of gen-
erations) over previous known results for evolving conjunctions
and halfspaces with respect to restricted distributions.

Keywords-evolvability; computational learning theory;

I. INTRODUCTION

Darwinian evolution is one of the most important scien-
tific theories and suggests that complex life-forms emerged
from simpler ones. Yet, the nature of the complexity that
can evolve in organisms and the processes therein are not
well understood. The two central aspects of Darwin’s theory
are 1) creation of variation due to mutations, and 2) natural
selection among the variants, a.k.a. survival of the fittest. It
is now more or less understood that the underlying DNA
sequence or genome of an organism contains code for
proteins and also encodes rules governing their regulation.
Thus, with some exceptions, the genome almost entirely
controls the functions of an individual organism.

One example of a function encoded in the genome of
an organism could be a circuit that decides the level of
enzyme activity based on the environmental conditions (e.g.
temperature, presence of oxygen etc.). A natural question
that arises is, what is the complexity of functions that
can be encoded in a genome, given that it must have
occurred through Darwinian evolution? In a seminal paper,
Valiant [1] proposed a computational model for evolution
that captures the central ideas of mutation and natural
selection. Valiant’s work seeks to study evolution in the
framework of computational learning theory, and understand
the evolutionary process as a restricted form of learning. The
goal of computational learning theory is to separate concept

classes that can be efficiently learned from those that cannot.
Examples of concept classes of interest include polynomial
size decision trees, polynomial size DNFs, etc. Valiant [1]
posed the same question in the context of evolution: what
is the complexity of functions that can be evolved, or
alternatively what concept classes are evolvable?

In subsequent work Feldman [2], [3] showed that evolv-
ability in Valiant’s model is equivalent to correlational
statistical query (CSQ) learning and also that the evolution
model is robust in the sense that changing the model slightly
does not change what is evolvable. Kanade, Valiant and
Vaughan [4] showed that Valiant’s model of evolution is
also robust with respect to drift in the target function. Thus,
Valiant’s model seems well-suited to study computational
questions arising in evolution.

One of the most important aspects of the biological world
not modeled explicitly by Valiant is the existence of two
sexes and the process of recombination. Sexual reproduction
is nearly universal in higher organisms and thus is thought
to be an important factor in evolution. There are several
proposed explanations for the role of sex and recombination.
We discuss some of these in the related work section, but the
most relevant argument for our work is the one that sexual
reproduction can accelerate evolution through parallelism.
Fisher [5] first proposed that sexual reproduction can speed
up evolution (see also [6], [7]):

A consequence of sexual reproduction which
seems to be of fundamental importance to evo-
lutionary theory is that advantageous changes in
different structural elements of the germ plasm can
be taken advantage of independently; whereas with
asexual organisms either the genetic uniformity
of the whole group must be such that evolu-
tionary progress is greatly retarded, or if there
is considerable genetic diversity, many beneficial
changes will be lost through occurring in individ-
uals destined to leave no ultimate descendants in
the species.

(from The Genetical Theory of Natural Selection
- R. A. Fisher 1930)

A simple explanation for this is the following: Suppose that
there are two allelic mutations a — A and b — B that

are both favorable and also additive in their effect, then an
individual having both A and B alleles will be the fittest.
However, beneficial mutations are extremely rare in nature.
Under asexual reproduction an individual possessing both
alleles A and B would appear, only if a mutation, say
b — B, occurs in an individual already possessing allele
A. For this to occur with high probability, the A allele must
have already spread in the population. For a large fraction of
the population to acquire both A and B, several generations
may be required. Under sexual reproduction, even if the two
mutations a — A and b — B occur in different members of
the population, via recombination there will be a member
with both mutations in much fewer generations. Roughly
speaking, if there are n loci on which selection acts addi-
tively, asexual reproduction may require O(n) generations
to produce the fittest variant, while sexual reproduction is
able to achieve the same in only O(log(n)). Our main result
shows that recombination allows for parallelism,

Theorem 1. If C is parallel CSQ learnable in T
query steps, then C' is evolvable under recombination in
O(T log®(n/€)) generations.

Using our result we can immediately show the following:

1) Under any fixed distribution, conjunctions can be
evolved with recombination in O(log®(n/e)) gen-
erations. The best known result in Valiant’s model
requires O*(n) generations.

2) Under radially symmetric distributions and product
Gaussian distributions, halfspaces passing through
the origin can be evolved with recombination in
O(log?(n/e)) generations. The best known result in
Valiant’s model requires O*(n) generations.

We briefly discuss some related work before describing
our evolution model in detail and proving the main results.

Related Work: The extent of concept classes that can
be evolved in Valiant’s model is quite limited. Valiant [1]
in his original paper proved that the class of monotone
conjunctions is evolvable with respect to the uniform dis-
tribution. Feldman [2] proved that evolvability is equiva-
lent to a restricted form of statistical query learning [8],
called correlational statistical query learning [9]. He also
showed that the class of singletons is evolvable distribution
independently, which is the only known non-trivial result
for distribution-independent evolution. Kanade, Valiant and
Vaughan [4] showed that the class of homogeneous half-
spaces is evolvable under radially symmetric distributions
and also under product Gaussian distributions. However,
Feldman [10] showed that the class of conjunctions is not
evolvable in a distribution independent sense, thus showing
that distribution-independent evolvability in Valiant’s model
is severely limited.

In an alternative line of research Michael [11] showed
that under squared-loss feedback (Valiant’s model uses zero-

one loss), decision lists can be evolved under the uniform
distribution using Fourier techniques. Feldman [3], [12]
showed that under a large class of (nonlinear) loss func-
tions evolvability is equivalent to statistical query learning.
Feldman [10] also showed that linear threshold functions
with a margin are evolvable distribution-independently under
a large class of (nonlinear) loss functions. P. Valiant [13]
has shown that for evolvability of real-valued functions,
the class of linear and polynomial functions is evolvable
under all convex loss functions (including linear loss) and
all distributions.

Regarding the factors responsible for maintaining sex and
recombination there seems to be no single answer. We have
already discussed the argument that sexual reproduction can
speed-up evolution. A different advantage of recombination
was proposed by Muller [6] - recombination is useful as
a means to weed out deleterious mutations. In a finite
population mildly deleterious mutations are likely to be
fixed in the population one at a time merely by chance
and eventually a large number of these will accumulate. In
the absence of recombination, a deleterious mutation cannot
be removed except by a back-mutation which is extremely
rare. This effect is known as Muller’s ratchet. Epistasis
refers to the non-independence between loci with respect to
their effect on fitness. Hitchhiking is the phenomenon where
certain (possibly deleterious) alleles are maintained because
they are coupled to other beneficial mutations. Epistasis,
hitchhiking and other factors are thought to play a role in the
maintenance of recombination. Livnat et al. [14], [15] have
suggested that sexual reproduction gives rise to modularity
and mixability. Maynard Smith [16], [17] and Barton and
Charlesworth [18] survey several proposed explanations for
the maintenance of sex and recombination.

Our Contributions: In this work, we are interested in
understanding how evolution in Valiant’s model can be sped
up in the presence of recombination. Thus, Fisher’s ideas are
most relevant to our work, and indeed our model is inspired
by his work. In order to model recombination we need
to consider a finite population with variation, whereas in
Valiant’s model all members of the population were consid-
ered identical. Our model is inspired by models from popula-
tion genetics, particularly the Wright-Fisher model [5], [19].
As in the Wright-Fisher model we have discrete generations
and a fixed-size population in each generation. The members
of each generation choose their parents randomly from
the previous generation'. However, unlike the models in
population genetics, the individuals in our population are
representations of boolean functions. These functions may
be modified through mutation and recombination. The goal,
as in Valiant’s model, is to evolve a representation that
predicts an unknown ideal function (almost) accurately using

'However, a generation in our model does not necessarily refer to one
biological generation. See Section VI

feedback obtained through (natural) selection. We show that
recombination does indeed speed-up evolution and in fact an
exponential speed-up can be achieved for evolving certain
concept classes, in terms of the number of generations. We
show this via a reduction from parallel learning algorithms
using techniques introduced by Feldman [2]. The reductions
in the paper require initialization, i.e. we are allowed to
decide the starting population.

Section II describes our extension to Valiant’s evolution
model to explicitly include recombination. Section III de-
scribes certain models of statistical query learning and Sec-
tion IV contains the reduction from parallel CSQ learning
to evolvability. In section V we give parallel algorithms
for certain learning problems, thus showing their faster
evolvability with recombination. Section VI concludes with
some discussion and directions for future work.

II. EVOLUTION MODEL

We extend Valiant’s model of evolution [1] to model
explicitly the process of recombination. The environment
is thought of as an instance space X and let D be a
distribution over X. A concept class C' over X is a set
of boolean functions, f : X — {—1,1}. We assume that
the representation size of the instance space X is captured
by a parameter n. It is common in computational learning
theory to define instance space as U,>1X,, however, to
simplify presentation we only use X and keep the size
parameter n implicit. The notion of efficient computation
requires resources to be bounded by a polynomial in n,
as well as parameters e ! (accuracy) and 5! (confidence).
Suppose that f € C is the ideal or target function. In the
context of evolution, we can think of an ideal function as
one that indicates whether or not a given protein should be
synthesized in a given environment. The environment may
be defined by several input parameters such as temperature,
humidity, presence of oxygen etc.

A representation class R is a set of representations,
such that every » € R is a (possibly randomized) boolean
function, r : X — {—1,+1}. In this paper, we use zero-one
loss as in Valiant’s original model, however our reductions
could easily generalize to different loss functions (cf. [2],
[3]). Throughout this paper, we abuse notation in the case
when r is a randomized boolean function and use r(x)
to also denote E[r(x)], where the expectation is over the
internal randomization of r. Thus, r can be viewed as a
real-valued function with range [—1,1]. The performance
of a representation r with respect to target function f and
distribution D is defined as,

Perfy p(r) = Equp[f(z) - r(x)] € [-1,1].

Our model has two main components: 1) A recombinator
operator that takes as input two representations and outputs
a list of possible descendants. 2) Selection that takes place

based on empirical performance of variants created by the
recombinator.

A. Recombinator

Recombination is a process that takes two genotypes and
produces new ones combining the two. The exact process
of recombination in biology is not completely understood,
and modeling such a process seems inherently problematic.
Following Valiant’s idea of defining mutations as the output
of a randomized polytime Turing machine, we similarly
define a recombinator as a randomized polytime Turing
machine that takes as input two representations 71,72 € R,
the error parameter ¢ and outputs a list of possible de-
scendant genotypes Desc(r1,r2,€) of r1 and ro. Mutations
are the sole way to add new variation in the process of
evolution, recombination may only explore existing variation
in different ways. In the case of sexual reproduction and
recombination, only mutations that occur on the germ line,
i.e. those that would be passed down to descendants matter.
In our model the recombinator operator is allowed the power
of an efficient Turing machine, and is assumed to model both
mutation and recombination, as it is impossible to separate
the two from the point of view of selection in a sexually
reproducing population.

Definition 1 (Recombinator). For polynomial p(-,-), a p-
bounded recombinator is a randomized Turing machine that
takes as input two representations r1,7o € R and € and
outputs a multi-set of representations Desc(r1,r2,¢) C R.
The running time of the Turing machine is bounded by
p(n, e~ 1) and |Desc(ry, 72, €)| < p(n,e 1), Desc(ry, e, €)
is allowed to be empty which is interpreted as r1 and ro
being unable to mate.

The function Desc(ry,79,€) is similar to the neighbor-
hood function in Valiant’s model. There are two main
differences: First, we define Desc(ry, 72, €) as a multi-set; in
Valiant’s model along with the neighborhood, a probability
measure is defined to specify the probability of generation
of each mutation. The set Desc(ry, 2, €) is allowed to be
empty; this reflects the fact that certain pairs of genomes do
not allow for recombination.

B. Selection

In order to define selection we need to define vari-
ants that are feasible (viable) for survival. We assume
that we have oracle access to a noisy performance func-
tion, 7-Perfy p(-), that takes as input a representation r,
and outputs T—lj/c;ff,p(r) that satisfies |T-I)/e?ff7D(’l") -
Perf; p(r)] < 7. This is similar to the statistical query
oracle of Kearns [8]. We require that 7;11 is bounded by a
polynomial in n, e~!. Such a noisy 7-Perf; p(-) oracle can
easily be simulated by drawing a (reasonably large) sample
and returning the empirical estimate.

In order to define feasible variants (from the descendants
of r1 and r3), we need to define a tolerance function
t(ry, ro,€).

Definition 2. (Tolerance Function) A (valid) tolerance func-
tion t is a function that takes as input two representa-
tions r1,72 € R, and accuracy parameter ¢ and outputs
t(r1,72,€) € [0,1] that is bounded above and below by two
polynomially-related polynomials, i.e. there exist polynomi-
als tl(-,-),tu(-,-) such that for every r1,r9 € R and e,
1/tu(n,e 1) < t(ri,re,e) < 1/tl(n,e ') and that there
exists a constant a such that tu(n,e 1) < (tl(n,e1))%
Furthermore, t can be computed in polynomial time.

The output of a recombinator is a multi-set of repre-
sentations that are variants of the starting representations.
We define the multi-set of feasible variants denoted by
Feas, using the noisy 7-Perf; p(-) performance function
and a tolerance function ¢(r1,79,€). Feasibility is defined
as having performance at most ¢(r1,r2, €) lower than one of
the starting representations. Thus, for two representations
r1,7r2, define Feas; (r1,72,€) as a multi-set of feasible
representations that is a sub-multi-set of Desc(r1, 72, €).

Feas; -(r1,72,€) =
{r € Desc(r1,ra, e)|7’—P/e?ff7D(r) >0 —t(ry,ra,€)}

where v* = min(r-l%?ff,p(rl), T-ﬁ(%?fﬁD(’l“g)).

The feasible variants are those whose performance is not
much worse than that of the representations that produced
them. We believe this is a reasonable definition of feasibility
since if the original representations were able to survive
in the existing environment, variants whose performance
(fitness) is not noticeably lower should be able to survive as
well. It is possible for different members of the population
to have different fitness levels at any given generation.

Valiant’s original model did not require a diverse popu-
lation. Indeed in an evolutionary algorithm in the sense of
Valiant [1], at each generation only a single genotype was
preserved and changes across generations were caused solely
due to mutation. For recombination to influence evolution in
any way, variation in population at each generation is a must.
In this paper we assume the existence of a finite population
and if its size is bounded by a polynomial it is considered
reasonable.

Define a population to be a subset of R, the set of
representations. An evolutionary step takes a population Py
to population P; at the next generation. This transition in-
volves action of the recombinator on existing representations
of Py, and then selection of (random) feasible variants.
The population P; is produced as follows. Each member
of P, is picked by picking parents ri,7s randomly from
Py (with replacement). We consider the feasible variants
Feas, ,(r1,r2, €) of the multi-set Desc(r1, 72, €) and choose

r randomly from Feas; ;(r1,72,€) if it is non-empty. This
process is repeated until |P;| = | Py|. Formally,

Definition 3. (Evolutionary Step) An evolutionary step takes
as input a starting population Py C R, and using a recom-
binator that defines Desc(r1,72,€) for every 11,72 € R, a
tolerance function t and a performance oracle T-Perfy p
outputs a population Py as follows:

Let P1 = @
Do while |P| < | Py

1. Select randomly (with replacement) ri,r2 € Pp.

2. Consider the descendants Desc(r1, 72, €).

3. Construct the feasible variants Feas; (1,72, €) with
respect to tolerance function t and performance
oracle T-P/E)?fﬁ[).

4. If Feasy(r1,72,€) # 0, pick v randomly from
Feas;(r1,r2,€) and put r in Py.

Observe that as long as the population size | Pp| is poly-
nomially bounded, an evolutionary step can be simulated in
polynomial time. An evolutionary algorithm consists of the
following components: a representation class R, a recombi-
nator operator Desc, a tolerance function ¢, a performance
oracle 7-Perf, and is defined as a sequence of evolutionary
steps that starting with population Fp, successively produces
the populations Fy, P1, P Formally,

Definition 4. (Evolutionary Algorithm) For a polynomial
p(+,+), a p-bounded evolutionary algorithm consists of a
representation class R, a recombinator operator Desc, a
tolerance function t and has access to a performance oracle
7-Perf s p. An evolutionary algorithm starting with popula-
tion Py is a sequence of evolutionary steps, that successively
produce populations Py, Py, Ps, It is required that the
recombinator Desc is p-bounded, |Py| < p(n,e ') and
771 < p(n,et).

Finally, we define the notion of evolvability with recombi-
nation in g generations. We say that evolvability with recom-
bination requires initialization if the evolutionary algorithm
succeeds when starting from a particular population Fp.

Definition 5. We say that a concept class C is evolvable
with recombination with respect to distribution D over X in
g generations, if for some polynomial p(n,e') there exists
a p-bounded evolutionary algorithm, that for every € > 0,
from any starting population Py and for every target function
f € C, with probability at least 1 — € for some t < g
reaches a population P; containing a member r € P; such
that Perf; p(r) > 1 —e

Readers familiar with the Wright-Fisher model from
population genetics will notice the similarity between their
model and ours. However while population genetics is
concerned mainly with allele frequency distributions, the
focus of our work is on understanding the computational

limits of evolution. A natural question that arises is, does
augmenting Valiant’s model with recombination increase
the power of evolvability? In the sense of polynomially
bounded evolvability the answer is negative. This follows
from Feldman’s [2] result showing equivalence between
evolvability and correlational statistical query learning, and
this observation was also implicit in Valiant’s paper (cf.
Section 6 [1]). However, we show that evolvability with
recombination may be exponentially faster for certain in-
teresting concept classes under restricted distributions; this
follows via a reduction from parallel learning algorithms
to evolvability with recombination. Our reduction requires
initialization. In the next section, we formally define a model
for parallel correlational statistical query learning and then
show in Section IV that parallel correlational statistical query
algorithms can be simulated using evolutionary algorithms
with recombination. The algorithms presented in this paper
may appear somewhat unnatural, but the goal is not to
model exact physical processes but to understand their
computational limitations. Our model can be understood as
specifying the outer limits of the evolutionary process, as we
do not expect nature to perform computations not captured
by efficient Turing machines.

III. STATISTICAL QUERY LEARNING MODELS

The statistical query (SQ) model was introduced by
Kearns [8] and has been an important tool in studying noise-
tolerant learning algorithms. As in the PAC model, the goal
of a learning algorithm is to output a hypothesis & that has
low error with respect to the target function f under a fixed
but unknown distribution D. The learning algorithm has
access to a statistical query oracle but not random labeled
examples. The learner is allowed to make queries of the form
(¢, 7) where ¢ : X x {—1,1} — [—1,1] is a polynomially
evaluatable query function and 7 is a tolerance parameter.
The oracle may respond with any value v that satisfies
[Ezwplt(z, f(x))] —v| < 7. An SQ algorithm is efficient if
it runs in polynomial (in 7, e ~1) time and furthermore 7! is
bounded by a polynomial in n, e ! and outputs a hypothesis
h such that errp(h, f) = Prpoplh(z) # f(z)] <e.

A correlational statistical query (CSQ) (cf. [2], [9])
is a query ¢ where ¢ : X — [—1,1] is polynomially
evaluatable. A 7-CSQ oracle on receiving query ¢ returns
a value v such that |E,.p[¢(x)f(z)] — v| < 7. Thus
the 7-CSQ oracle returns the (noisy) correlation between
a function ¢ and the target f, or alternatively the (noisy)
performance of a function ¢. We also require that 77! is
polynomially bounded. Feldman [2] showed that Valiant’s
evolvability model is equivalent to CSQ) learning. That an
evolutionary algorithm in Valiant’s model can be simulated
using an algorithm with access to a CSQ oracle is imme-
diate, and this is also the case when considering evolution
with recombination. Thus Feldman’s result shows that CSQ
learning is equivalent to polynomially-bounded evolution

(with or without recombination). However, recombination
does in fact allow an exponential speed-up in terms of the
number of generations required to evolve to a representation
(hypothesis) close to the target. This follows using a general
reduction from parallel CSQ learning to evolvability with
recombination. Next, we define a model for parallel CSQ
learning.

A. Parallel Correlational Statistical Query Learning

We define a model for parallel correlational statistical-
query learning with a 7-CSQ oracle. A parallel CSQ learn-
ing algorithm uses p (polynomially bounded) processors and
we assume that there is a common clock which defines
parallel time steps. During each parallel time step a proces-
sor can make a CSQ query, perform polynomially-bounded
computation and write a message that can be read by every
other processor. We assume that communication happens at
the end of each parallel time step and on the clock. The CSQ
oracle answers all queries in parallel. We are not concerned
with the exact mechanism for message passing, for example
it could be implemented using shared memory.

Definition 6 (Parallel CSQ Learning). A concept class C
over an instance space X is (7,T)-parallel CSQ learnable
using p processors under distribution D, if there exists a
parallel CSQ algorithm that uses p processors and for
every € > 0 and target function f € C, after at most T
parallel steps and with access to a T-CSQ oracle, outputs
a hypothesis h such that Perf¢ p(h) > 1 —e. Each query ¢
must be polynomially (in n,e1) evaluatable and 7= must
be bounded by a polynomial in n,e~'. Each parallel step
must be completed by each processor in polynomial time.

To simplify the actual reduction, we define a slightly
weaker model of correlational statistical query learning
(ZCSQ). A 7-ZCSQ oracle (with 7=! poly-bounded) on
receiving query ¢, where ¢ is a polynomially evaluat-
able function, returns 1 if Perfs p(¢) > 7, returns O if
Perf; p(¢) < —7 and otherwise returns either 0 or 1. We
first show that access to a ZCSQ oracle is not restrictive
in the sense that we can simulate a CSQ algorithm using
access to ZCSQ oracle. The notion of a ZCS(Q oracle is
implicit in Feldman’s work [3] (Section 6) and the proof of
the following theorem follows from his work. A complete
proof is provided in the full version of this paper.

Theorem 2. For some polynomial d(n, e~ "), every (87,T)-
parallel CSQ learning algorithm using p (polynomial in
n,e~t) processors, can be simulated by a (7', T")-parallel
7ZCSQ algorithm with p(d(n,e=1))*/72 processors with
T' = T-(log(1/87)+1)+2 parallel steps, (')~ is bounded

by a polynomial in n,e™".

IV. REDUCTION TO EVOLUTION

In this section, we prove our main result that fast parallel
CSQ learning implies fast evolution in the presence of

recombination. We use the main idea from Feldman’s reduc-
tion [2], [3] that shows that correlational statistical queries
can be simulated by evolution. The statement (restatement
of Theorem 1) of our main theorem is:

Theorem 3. Suppose concept class C is (1,T) parallel-
CSQ learnable using p processors, then C is evolv-
able with recombination starting with an initialized pop-
ulation Py within polynomially bounded resources in
O(Tlog(T~ 1) (log(p) + log(n/e€))) generations.

The proof of Theorem 3 follows immediately from The-
orem 2 and Proposition 1 stated below.

Proposition 1. Suppose concept class C is (1,T)-parallel
ZCSQ learnable using p processors, then C is evolvable
with recombination starting with an initialized population
Py within polynomially bounded resources resources in at
most T'(log(p) + 2) + 1 generations.

We first describe a high-level outline of the proof strategy
and then provide more details. Suppose A is a (7, T')-parallel
ZCSQ algorithm for learning C. We define a representation
class R that contains representations encoding the state of a
simulation of .A. We assume that at the end of each parallel
step, all the processors have the same “state information”
denoted by some string z. This is without loss of gen-
erality, since the processors are allowed any polynomially
bounded communication. However, each processor has a
unique identity ¢ that differentiates its actions from those
of other processors. We start with a population Py in which
every member is identical with zero fitness. This is achieved
by a representation r°, which is a randomized representation
where r’(x) = 1 or —1 with equal probability. We show
that each parallel-step of the algorithm is simulated using
log(p) + 2 evolutionary steps. We refer to the simulation of
the k" parallel step as phase k. The outline of the simulation
is as follows:

1) At the start of phase k the population is identical,
r*=1. Each phase begins with a differentiation step,
at the end of which each member of the population
has an identity of the processor it will simulate, and
there are roughly equal number of members simu-
lating each processor. This is achieved by defining
Desc(r*=1 rF=1¢) = {riF=1|i = 1,.-- p}, where
each r*~1 is functionally identical to r*~! but en-
codes the identity of processor ¢ that it will simulate.

2) After differentiation each individual simulates the
processor it has chosen by using the recombinator
(essentially just a mutation in this case) to simulate
the ZCSQ query that the processor makes during that
parallel step. This step is similar to Feldman’s reduc-
tion that shows that ZCSQ queries can be effectively
simulated by a single mutation step. Furthermore,
the descendants that survive also encode the message
that is to be passed to all other processors in the

communication step.

3) The communication (message passing) in each parallel
step is simulated using log(p) evolutionary steps. At
the end of these the population once again becomes
identical, r*, and phase k is over.

At the end of phase 7T, each representation r* encodes a
state that represents a valid simulation of the parallel ZCSQ
algorithm A, and thus can produce a hypothesis & that has
high performance. This can be achieved in one evolutionary
step.

Now, we describe the main details of the construction of
the representation class that we use and define Desc and the
tolerance function. A more detailed proof is provided in the
full version of this paper.

We specify exactly what r is later, but for now
assume there is some representation r*~! and we define
Desc(r*=1,r*=1 ¢). Recall that r**~! is a representation
that is functionally identical to r*~!, but encodes the ad-
ditional information that it should take the role of processor
i of the parallel ZCSQ algorithm A. Define,

Desc(rf=1 rF =1 e) = {rF=1 | 1 <i < p}

T

k-1

Thus, at the end of the first evolutionary step of phase k,
the population consists of members of the form r*~1 and
there roughly equal number of members for each value of
1. In the next step each of these representations simulate the
ZCSQ query of the corresponding processor. Let ¢*~! be
the query made by the processor ¢ during parallel step k,
where z captures the state of the simulation so far, and let
a;’k be the message it wishes to pass, which may depend
on the query response b. Then define,

. _ 1 ,
k=1 ik—1 , L i\b+1 gik—1
e L A
rZ’kZi_l is defined for b = 0, 1, which are the possible query
0y

responses. N is some sufficiently large (but polynomially

bounded) number that we define later, whose role is only to

keep all representations bounded between [—1, 1]. In Claim
1

1, we show that rz’k;k,l is feasible (as a descendant of
o

rik =1 and rF-1) if and only if b is a valid 7-ZCSQ oracle
response to the query ¢2¥~1. Also oZ’kil is the message that
processor ¢ wishes to broadcast at that step. Claim 1 proves
that after two evolutionary steps a population starting from
identical members r*~! is transformed into a population

. i k—1
containing only members of the form rZ’ : n—1»> €ach member

representing a valid simulation of the %—QCSQ query made

by the corresponding processor ¢. Furthermore, there are

sufficiently many member of each type. Formally define,
Desc(ri’]“_l, ri’k_l,e) = {ri’kf1 | b=0,1}

ik—1

b,o,
. 0 — i’ p— . .
Desc(rF=1 v k=1) = (), for i # i/

Finally, we also need to specify the tolerance function. De-
fine ¢(ry,72,€) = 7/2N, whenever 1 and r are both one of

k=1 fLh=1 k=1 Since 77! and N are polynomially

bounded, this is a valid tolerance function.

In the proofs in this section, we use the following version
of the Chernoff-Hoeffding bound: If X; are independent
identically distributed with mean p, such that X, € [0, 1],
then

Pr[(#5 ZX <u1+5)>

Claim 1. Suppose that we begin with a population P in
which each member is identical, r*=1. Suppose o = 1/p,
then for every 0 < 6 < 2Y/*—1, after 2 evolutionary steps we
get a population in which the following hold with probability
at least 1 — 4pe=% I P1/24,

1) Each member of the population is of the form 7'; ko ‘. ,} 1

< 26752;“71/12

where b is a valid query response to the query ¢% k-1
made by processor i during the k" parallel step
and oz’k_l is the message the processor i wishes to
broadcast. _

2) If f; is the fraction of the population of type 7’;’
then

k-1

i,k—1>
Ty

5
(1+5)5 <fi <1406V
Proof: Let P be the starting population; each member
of Pis r*=1and Desc(r*=1 r*=1) = {rF=1 |1 <i < p}.
Then, imagine choosing the population for the next genera-
tion one member at a time (as in Def. 3); each time the prob-
ability of choosing r"*~1 is exactly 1/p for every i. Thus
after one generation the population will be differentiated and
the expected number of individuals r'*~! is a|P| = | P|/p.
Thus except with probability 2e=9"*PI/12 the fraction of
k=1 say f;, satisfies /(14 6) < f; < (14 6)a. Taking
union bound, this holds for all ¢ with probability at least
1— 2pe—6 a|P\/12
Thus after one evolutionary step, each member of the
population is of the form r**~1 and assume that ﬁ satisfies
a/(1+6) < fi < a(l +9) (allowmg the simulation to fail

with probability 2pe’5 alP|/12) Next we show that r; kl‘ L
Ty
is a feasible descendant of r’**~! and r**~1 if and only

if b is a valid response of a 7-ZCSQ oracle to the query
$“*~1. The evolutionary algorithm uses a (7/4N)-Perfy p
oracle (4N/1 is polynomially bounded). Suppose b = 1 and

;kl +_, is feasible. Then,

T
4N 2N
Because a 7/4N Perf #,p oracle returns the value of Perf ¢ p
accurately up to an additive factor 7/4N, this implies that,

-Perff,D(r;”’g,Ll) >

~Perf; p(rF) -

Perf s p(r Zykli) — PerfﬁD(ri’k_l) > —%
1 ,
B0 @) @) 2~

Eonplol" ! (z) f(z)] > —7

Here f is the ideal (target) function. But the last statement
implies that b = 1 is a valid response to the query ¢**~1 by
a 7-ZCSQ oracle. The case when b = 0 is a feasible variant
is similar.

The statement about the fraction of representations of each
type now follows immediately using the Chernoff-Hoeffding
bound, since the expected number of representations of
the form rzkli , (given f; for all i) is (f2/ o 2P|

Note that a/(+0)* < f2/3, 7 < a(l 4 6)*. Since
f2/ >, f2 > a/2 for the value of § in the statement of the
Claim, except with probability 2pe=9"P1/24 for all i, it
holds that o/ (1+6)® < f; < a(1+6)°. (Note that when both
b= 0and b = 1 are valid answer to a query the total fraction
of the population with either of these responses is still that
indicated in the statement of the claim.) The assertion then
follows by taking a union bound over failure events of the
two evolutionary steps. []

Thus at the end of 2 evolutionary steps in phase k,
we have a population P such that every member of the
population is of the form rbk”} . where b represents a

valid response to the query made by processor i during
parallel step k. We now define the action of a recombinator?
on these new representations. We need to define a few

k—1 k—1
more intermediate representations. Let 1/)‘ = rl‘) ikt

Then, for ¢ = 1,...,log(p) and for 1 < i < p/2* define
ikt = g2 bR 2kl k=1 We now define the

recombinator operator on these variants.

1) For representations 2 VT 2Rl for ¢ =

0,...log(p) — 1, Desc(y?~1A=1 y2kl)
{zbz_ff 1}. Here, we assume that message passing also
occurs so that waf ! captures the combined state of
both its parents.
2) For any other pairs
Desc(rq,ra,€) = 0.
Finally, we define tolerance function ¢(ry,7r2,€¢) =
27pT /N, if r1, 79 are of the form wz:’kfl for some 4’ and
t'. We choose N to be large enough so that t(ry,ra,¢€)
is a valid tolerance function (i.e. t(r1, 72, €) is sandwiched
between inverses of polynomially related polynomials). Also

let r* 1/)2 k=1 then notice that
log(p)

kL g1 =1
_N zi—1 ¥zi—1
1<i<p
1<5<k

of representations 71,79,

where /71 is the state of the parallel algorithm after
completion of j — 1 parallel steps, and d) ! is the query
made by processor ¢ during parallel step j and 32] I~tis 1if
the query response encoded is 1 and —1 if the query response

2Note that in addition to making queries and passing message, processors
in a parallel algorithm also perform polynomially bounded computation.
This is simulated by the recombinator because the representation encodes
the state of all processors.

encoded is 0. Thus r” is a linear combination of all queries
made by all parallel processors in k parallel steps (and in
addition also includes query responses and state information
obtained by message passing).

Claim 2. Suppose we start with a population that satisfies
the assertion of Claim 1. Suppose o = 1/p, then for every
0 <8 <1In(2)/(5p3), after log(p) recombination steps, with
probability at least 1 — 2p 10g(p)e“520‘|P|/24 the population

becomes identically r*.

Remark 1: There is a subtle point that needs to be made
here. For some of the queries both b = 0 and b = 1 are
valid responses. Thus technically the population at the end
of claim 2 may not be identical. However, it is the case that
each member of the population represents a valid simulation
of k parallel steps of the parallel ZCSQ algorithm .4, which
is all that is needed for our purposes.

Remark 2: With regard to the above remark, note that
because it is not the case that population r*~! is exactly
identical, but only that each member represents a valid
simulation, while defining recombination we need to be

more careful. We have defined w;’f;l = wjzi’l Al
wzlk '_ k=1 In the case that the representations wzl Lk-1

and 1/1? #=1 contain possibly different versions of rk 1 both
valid simulations, then any one of the may be removed to
keep the representation bounded in [—1, 1]. For the reduction
to hold, all we need is that the state (including query
responses) of any valid simulation of the the parallel-ZCSQ
algorithm A up to step k — 1 is carried forward.

Proof of Claim 2: The main idea is that we combine
information of two processors at a time and thus after
log(p) steps, there are individuals who have information
of simulations of all processors and the communication is
complete. For simplicity we assume that p is a power of 2,
so that log(p) is an integer.

We claim that after j evolutionary steps, with probability
at least 1 — 2jpe’52°“P|/12 the following hold:
1) Each member of the population is of the form ¢
i=1,...,2s®-i
2) It VH is the fraction of the population of the form
! with then 2a/(146)% < f < 2a(1+6)%.
where a; is defined by the recurrence, ag = 5, a; = 4a;—1+
1. We show this assertion by induction. It clearly holds when
j = 0 (because it is the assertion of Claim 1). Suppose it
holds for j, then consider the corresponding assertion for
j + 1. Consider an individual w;ffl, that can be produced
by the action of the recombinator on 1/}22 LE=1 and wQZ Bt

The number of (7' -, P *) pairs is fJ;_, f3.|P|? and we
know that,

(27alP))?
(1 + 5)2@7
On the other hand the total number of possible feasible

zkl

< fio1 J3:IPIP < (2l P))P(1+ 6)%

olog(p)—(i+1)

mating pairs is Zl 1 fgl_1f§l|P|2, which satisfies,

olog(p)—(+1)

> Biaser

=1

p (2alP|)?
2L (1 + 0)20 =

and
olog(p)—(i+1)

j i | |2 p
Z fglflfgl‘P| < 9j+1

=1

(ZalP)2(1 +)%

Thus the probability for an individual in the (j + 1)®
generation, that the parents from the ;" generation are
V2R and 2" s at least 27t o /(1 + 8)*% and at most
2+ (1 + 6)4]% Thus by the Chernoff-Hoeffding bound,
except with a further probability loss of 2pe=0"f " IPI/12,
we have 2/ /(14 0)4% 1 < /T < 271 (14 0)4ait,

Notice that a; < 5**! for all ¢, and hence for the value
of 4 in the statement of the claim, the values f,f for all
1,7 are at least «v/2. Thus the statement holds by induction.
However, after log(p) steps there is only one variant in the
population 1/1110’;“(; ; =rk,

It still remains to be proved that wjfl_ Lis a feasible
descendant of wm LE=1 and w;i’kfl. Note that since all
query responses are valid (by assertion of Claim 1), the
term (—1)°*1pi*—1 satisfies E[(—1)bH1gplF—1f]
where f is the target function. There can be at most pT
total queries and this can reduce the total performance
by at most pT7/N for any representation Wk ' Thus
Perf(%_{fl ') > Per f(w% LE=1y _ (pT'7)/N. Thus when

t(r1,7r2,€) = 2pTT/N and by us1ng a 7/4N- Perf oracle
the descendant LZ) +1 of 1/) and 1/121 " is feasible. W
Using Claims l and 2, we can now prove Proposition 1.
Proof (of Proposition 1): We start with a population in
which each member is identical, r°. Each parallel step of the
parallel ZCSQ learning algorithm .4 can be simulated using
log(p) + 2 evolutionary steps. Thus a (7, 7T)-parallel ZCSQ
learning algorithm can be simulated using an evolutionary
algorithm in T'(log(p) + 2) generations, at the end of which
all representations know the end state of a valid simulation of
A, that can then output a good hypothesis h (Perfs p(h) >
1—e).

In the simulation, any representation that we use is an
average of at most 7T'p (randomized) boolean functions.
Thus setting N = pT ensures that all the representations
are valid (randomized) boolean functions. But if necessary
we may set IV to be larger (but polynomially bounded) to
make the tolerance functions valid (sandwiched by poly-
nomially related polynomials e.g. N = pT'7n/e). Finally
we need to add one more evolutionary step. For r”, define
Desc(rf,vT ¢) = {r' hyr,...,hr}, where hr is the
output of the parallel ZCSQ algorithm and occurs M times
in the multi-set Desc(r”, r” €). Note that if Perf; p(r’) >
1—e+7/(2N), then r7 itself is a good hypothesis. Otherwise
the representation h,r is a feasible variant. (We can set

€ = ¢/2 and 7/N < ¢/2, to ensure that h,r is a feasible
variant.) We set M large enough so that h,r is chosen with
high probability. In order to ensure that the total failure
probability is not more than €, we set |P| = O*(p"T') where
O*(+) hides logarithmic factors. [|
Remark 3: We have only defined Desc for representations
that the evolutionary algorithm that simulates the parallel
Z(CSQ algorithm 4 reaches with high probability. However,
the definition needs to be made for all representations. For
the remaining states, this may be made arbitrarily.

Remark 4: The representations we have defined implic-
itly depend on e. To define a representation class inde-
pendent of €, we can define the representations for € =
1,1/2,1/4,...,1/2™ and start from a special representation
L. The first evolutionary step takes the population to a
representation encoding the correct e (cf. [2], [4]).

V. APPLICATIONS

In this section we show that our general reduction from
Section IV can be applied to the question of evolvability of
conjunctions and halfspaces under certain distributions.

A. Evolving Conjunctions

Valiant showed that the class of monotone conjunctions
is evolvable in O(nlog(n/e)) generations [1] under the
uniform distribution. Diochnos and Turdn [20] showed that
Valiant’s algorithm [1] can be improved and in fact showed
that monotone conjunctions under the uniform distribution
can be evolved in O(log(1/¢€)) steps. This holds even in
Valiant’s model, i.e. without recombination. Their method
however uses properties unique to the uniform distribution
and monotone conjunctions and it is not clear whether this
can be generalized to general conjunctions or other distribu-
tions. Feldman’s reduction from CSQ learning [2] implies
that conjunctions can be evolved in O*(n) generations in
Valiant’s model with respect to any fixed distribution.

Our reduction shows that under evolution with recom-
bination, the class of conjunctions can be evolved in
O((log(n)/€)?) generations. This follows from a simple
constant-time parallel CSQ algorithm for learning conjunc-
tions. This algorithm is non-uniform, i.e. it requires advice
capturing certain information about the distribution (cf. [2]).
Details are provided in the full version of this paper.

B. Evolving Halfspaces

Kanade, Valiant and Vaughan gave an algorithm for
learning homogeneous halfspaces under radially symmet-
ric distributions and product normal distributions. Their
evolution algorithm requires O(n/e) (in fact O(n/e%) in
the case of product normal distributions) generations. Our
reduction shows that under evolution with recombination,
homogeneous halfspaces under radially symmetric distribu-
tion and product normal distributions can be evolved in
O((log(n/€))?) generations. Details are provided in the full
version of this paper.

VI. DISCUSSION AND FUTURE WORK

Our work suggests that recombination can potentially par-
allelize and hence speed-up evolution in Valiant’s evolution
model. Our work should be understood as demonstrating that
for certain definitions of selection and recombination, poly-
logarithmic generations are enough for evolution whenever
a suitable parallel CSQ) algorithm exists. Here, we discuss
in some detail the choices made in our model and also open
questions.

In our model we have defined a recombinator operator,
that simultaneously captures both mutation and recombina-
tion. In a sexually reproducing species only mutations that
occur on the germ line matter and natural selection never
acts on mutations alone, but simultaneously also on recom-
bination. We have defined feasible® variants as those whose
performance is at most some inverse polynomial lower
than a variant that produced it. This definition is different
from those common in population genetics where survival
probability is determined by relative fitness, thus capturing
competition between members of the species. However, the
mapping from performance (in the sense of agreement with a
target function) may translate to survival probability in sev-
eral different ways. Although sharp thresholds are somewhat
unnatural, they are robust to any monotone transformation
between performance and survival probability. We believe
that our choice of definition of feasible variants makes
sense when the population is large and distributed over a
large area and selection is weak and roughly equal for all
beneficial mutations. However, if selection is much stronger
on some mutations than others, our definition of feasibility
may be unrealistic because weakly beneficial mutations may
not stand any chance of survival. Similar assumptions are
often used in population genetics models in the context
of conditions under which sexual reproduction accelerates
evolution (cf. [7], [16]). Maynard Smith [7] has a detailed
discussion on this topic and our model is a plausible one in
the conditions described therein.

One generation according to our model may correspond
to several biological generations. The number of biological
generations equivalent to one generation in our model (or
Valiant’s) can be thought of as the number of generations
required for a beneficial mutation (or a particular recombi-
nation) to be established in the population. Thus the speed-
up proposed by our model over Valiant’s only makes sense
when the rate of beneficial mutations is small compared to
the time required for a beneficial mutation to be established
in the population. This does seem to be the case in nature.

We believe that our reduction will generalize to different
performance measures such as those used by Feldman [3] in

3Unlike Valiant, we do not define beneficial and neutral mutations
separately. This is mainly for two reasons: first to keep the model relatively
simple, and second, since our results are most relevant when selection is
weak it makes less sense to differentiate explicitly between beneficial and
neutral mutations.

a straightforward manner. A question that remains open is
whether evolution under recombination would be equivalent
if the tolerance function were required to be fixed. Currently,
our model allows tolerance functions to depend on the
representations (similar to Valiant [1]). In our reduction,
we use different values of tolerance depending on the
representations concerned. We suspect that this is an artifact
of our reduction and in fact evolution with recombination
would remain equivalent with fixed tolerance. Another inter-
esting question is to find a “natural” evolutionary algorithm
using recombination for some simple concept class, such as
conjunctions. Such algorithms may shed more light on the
advantage of recombination.

Finally, there remains the question of showing lower
bounds on the number of generations required for evolution
in Valiant’s model. Feldman [2] showed that the correlational
query complexity of a class is an upper bound. However,
since the simulation of an evolutionary algorithm in Valiant’s
model can make several queries in each generation, a lower
bound that separates Valiant’s model from ours, in terms of
number of generations required for evolution, would likely
require different techniques.

ACKNOWLEDGMENTS

I benefited greatly from several discussions with Leslie
Valiant. T thank Vitaly Feldman, Adam Kalai and Leslie
Valiant for their comments on an earlier version of the
manuscript. [am grateful to Dipti Nayak and Gireeja Ranade
for pointing me to useful references in the biology literature.
This work was supported in part by NSF grants CCF-04-
27129 and CCF-09-64401.

REFERENCES

[1] L. G. Valiant, “Evolvability,” Journal of the ACM, vol. 56,
no. 1, pp. 1-21, 2009, (Earlier version appeared in the
Proceedings of the 32nd International Symposium on Mathe-
matical Foundations of Computer Science, LNCS, Vol 4708,
(2007) Springer-Verlag, 22-43.).

[2] V. Feldman, “Evolvability from learning algorithms,” in Pro-
ceedings of ACM STOC 40. New York, NY, USA: ACM,
2008, pp. 619-628.

[3] ——, “Robustness of evolvability,” in Conference on Learn-
ing Theory, 2009.

[4] V. Kanade, L. G. Valiant, and J. W. Vaughan, “Evolution with
drifting targets,” in Conference on Learning Theory, 2010.

[5] R. A. Fisher, The genetical theory of natural selection.
Clarendon Press, 1930.

[6] H. J. Muller, “Some genetic aspects of sex,” The American
Naturalist, vol. 66, no. 703, pp. 118-138, 1932.

[7] J. Maynard Smith, “What use is sex?” Journal of Theoretical
Biology, vol. 30, no. 2, pp. 319-335, 1971.

[8] M. Kearns, “Efficient noise-tolerant learning from statistical
queries,” JACM, vol. 45, no. 6, pp. 983-1006, 1998.

[9] N. H. Bshouty and V. Feldman, “On using extended statistical
queries to avoid membership queries,” Journal of Machine
Learning Research, vol. 2, pp. 359395, 2002.

[10] V. Feldman, “Distribution-independent evolvability of linear
threshold functions,” 2011, conference on Learning Theory.

[11] L. Michael, “Evolvability via the Fourier transform,” Theo-
retical Computer Science, 2010, to appear.

[12] V. Feldman, “A complete characterization of statistical query
learning with applications to evolvability,” in Proceedings of
the IEEE Symposium on Foundation of Computer Science.
Washington, DC, USA: IEEE Computer Science, 2009, pp.
375-384.

[13] P. Valiant, “Distribution free evolvability of real functions
over all convex loss functions,” 2011, eCCC-TR-11-089.

[14] A. Livnat, C. Papadimitriou, J. Dushoff, and M. W. Feldman,
“A mixability theory for the role of sex in evolution,” PNAS,
vol. 105, no. 50, pp. 19 803-19 808, 2008.

[15] A. Livnat, C. Papadimitriou, N. Pippenger, and M. W. Feld-
man, “Sex, mixability, and modularity,” PNAS, vol. 107, no. 4,
pp- 1452-1457, 2010.

[16] J. Maynard Smith, The Evolution of Sex. Cambridge:
Cambridge University Press, 1978.
[17] ——, “The evolution of recombination,” The evolution of sex:

an examination of current ideas (edited by R. E. Michod and
B. R. Levin), pp. 106-125, 1988.

[18] N. H. Barton and B. Charlesworth, “Why sex and recombi-
nation?” Science, vol. 281, pp. 1986-1990, 1998.

[19] S. Wright, “Evolution in mendelian populations,” Genetics,
vol. 16, pp. 97-159, 1931.

[20] D. I. Diochnos and G. Turdn, “On evolvability: The swapping
algorithm, product distributions, and covariance,” in Fifth
Symposium on Stochastic Algorithms, Foundations and Ap-
plications. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
74-88.

